<-M 131> Palindrome Partitioning
// Method 1
class Solution {
public:
vector<vector<string>> partition(string s) {
const int n = s.size();
bool p[n][n];
fill_n(&p[0][0], n * n, false);
for(int i = n - 1; i >= 0; i--)
for(int j = i; j < n; j++)
p[i][j] = s[i] == s[j] && ((j - i < 2) || p[i + 1][j - 1]);
vector<vector<string>> sub_palins[n];
for(int i = n - 1; i >= 0; i--)
for(int j = i; j < n; j++)
if(p[i][j]) {
const string plaindrome = s.substr(i, j - i + 1);
if(j + 1 < n)
for(auto v : sub_palins[j + 1]) {
v.insert(v.begin(), plaindrome);
sub_palins[i].push_back(v);
}
else
sub_palins[i].push_back(vector<string> {plaindrome});
}
return sub_palins[0];
}
};
// Method 2
class Solution {
public:
vector<vector<string>> partition(string s) {
vector<vector<string> > ret;
if(s.empty()) return ret;
vector<string> path;
dfs(0, s, path, ret);
return ret;
}
void dfs(int index, string& s, vector<string>& path, vector<vector<string> >& ret) {
if(index == s.size()) {
ret.push_back(path);
return;
}
for(int i = index; i < s.size(); ++i) {
if(isPalindrome(s, index, i)) {
path.push_back(s.substr(index, i - index + 1));
dfs(i+1, s, path, ret);
path.pop_back();
}
}
}
bool isPalindrome(const string& s, int start, int end) {
while(start <= end) {
if(s[start++] != s[end--])
return false;
}
return true;
}
};